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Feature Detection / Object Detection
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Preprocessing

Feature Detection

Object Detection

Instance Segmentation

bike

Visual Feature  Detection                                   
Multidimensional 2D / 3D 

‣ Spot or blob detection ➡︎ DoG / LoG


‣ Edge detection ➡︎ Gradient


‣ Ridge detection (Filament) ➡︎ Hessian


‣ Segment ➡︎ Pixel Tracing 


‣ Keypoints ➡︎ Gradient


‣ Line/Circle ➡︎ Hough Transform 


‣ Simple parametric shape ➡︎ Fitting 


‣ Texture Analysis ➡︎ Filterbank and classification


‣ Directional Image Analysis ➡︎ Gradient Structure Tensor

  In this Course 
                  2D
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Gaussian Filter Definition
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Multidimensional Gaussian Function gσ(x) =
1

σ 2π
e− x2

2σ2

• Isotropic 

radial symmetry

gσ(x, y) =
1

2πσ2
e− x2 + y2

2σ2 = ( 1

σ 2π
e− x2

2σ2 ) ( 1

σ 2π
e− y2

2σ2 )• Separability

gσ1 (gσ2
(x)) =

1

2π(σ2
1 + σ2

2)
e

− x2
2σ2

1 + 2σ2
2σ2

eq = σ2
1 + σ2

2
• Cascade

• Adjustable in every dimension 1
(2π)3/2σ2

s σt
e

−
(x − cx)2 + (y − cy)2

2σ2s
− (t − t0)2

2σ2t

e.g. shift t0 in time, center c in space 
𝜎s in space and scale 𝜎t in time

gσ(x, y, t) =

standard 
deviation same 

unit than x

Truncated

0.000 0.000 0.001 0.002 0.001 0.000 0.000
0.000 0.003 0.013 0.022 0.013 0.003 0.000
0.001 0.013 0.059 0.097 0.059 0.013 0.001
0.002 0.022 0.097 0.159 0.097 0.022 0.002
0.001 0.013 0.059 0.097 0.059 0.013 0.001
0.000 0.003 0.013 0.022 0.013 0.003 0.000
0.000 0.000 0.001 0.002 0.001 0.000 0.000

0.059 0.097 0.059
0.097 0.159 0.097
0.059 0.097 0.059

Discretization of the Gaussian function

σ = 1

σ = 1

N = 2 ⌈3 σ⌉ + 1Support
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Gaussian Filter Properties
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• Fourier low-pass filter

• Normalization unitary gain, no overshoot

g0(x) = δ(x)• Limit converge to identity

• Convolution linear filter

• Central limit theorem  
“any repetitive operator goes in the limit to a Gaussian”  
FAST! independent of the filter size  
(e. g. cascade of 3 exponential filters) 

Smoothing  
Amount of blur controlled by one user-adjustable parameter

σ = 0 σ = 1 σ = 3 σ = 9 σ = 100

ℱ

∂g2(x)
∂2x

=
x2 − σ2

σ4
e− x2

2σ2
ℱ

ω2 ̂g(ω)

∂g(x)
∂x

=
−x
σ2

e− x2
2σ2

ℱ
ω ̂g(ω)

̂gσ(ω) = e−2π2σ2ω2
g(x) = e− x2

2σ2

Gaussian
First derivative
Second derivative

x
0

0.25

0.5

0.75

1

Gaussian
First derivative
Second derivative

ω
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Gaussian Filter in Action

5

g(x) = e− x2
2σ2

Gaussian 
• Low-pass filter 
• Denoising

h(x) = 1 − e− x2
2σ2

Signal - Gaussian 
• High-pass filter 
• Flat background

Signal
Large Gaussian filter
Signal - Gaussian

Gaussian DoG
LoG

Difference of Gaussian (DoG) 
• Band-pass filter 
• Spot detection: Local extrema

dogσ(x) =
1

2πσ2
1

e
− x2

2σ2
1 −

1
2πσ2

2
e

− x2
2σ2

2

σ2
1 = 2 σ2

2

∂2gσ(x, y)
∂x2

+
∂2gσ(x, y)

∂y2

Δg(x) =
x2 − σ2

σ4
e− x2

2σ2

Laplacian of Gaussian (LoG) 
• Band-pass filter 
• Spot detection: Local extrema
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Spot Detection
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Local extrema on the output of the LoG or DoG 

• Isotropic 
• Bright spot (positive) or dark spot (negative) 
• Filter 2D / 3D, tune the size 𝜎x 𝜎y 𝜎z

Mexican hat

Local

min.

3x3

convolve

2D

𝜎 = 1.25 
MIP in z

𝜎 = 0.75 
MIP in z

input

MIP in z

t

3D+T
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Blob Detection
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NoiseParticlesNucleusBackground

0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4 4.4 4.8

-0.25

0.25

0.5

0.75

1

Scale selectivity

Scale-space theory  
Multi-scale signal representation 
Tony Lindeberg, Scale-Space Theory  
in Computer Vision, 1994

DoG 
LoG

Multiple scale detection

Non-maximun 
suppression

Range of  
sigma

Input All  
detections
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Multivariate Derivative
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Gradient in 2D

∇f(x, y) =

∂f
∂x
∂f
∂y

|∇f | =
∂f
∂x

2
+

∂f
∂y

2

|∇f |

0

Extrema on the 
first derivative of 
denoised signal

0

Localization of 
edges by the 
first derivative

Edges Hessian in 2D

Hf(x, y) =

∂f 2

∂x
∂f 2

∂x ∂y

∂f 2

∂x∂y
∂f 2

∂y
[λmax 0

0 λmin]

0

Localization of ridges by 
second derivative

λmax

Ridges
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Orientation of Edges / Ridges
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Gradient in 2D Hessian in 2D

∇f(x, y) =

∂f
∂x
∂f
∂y

Hf(x, y) =

∂f 2

∂x
∂f 2

∂x ∂y

∂f 2

∂x∂y
∂f 2

∂y

θ = arctan(
∂f
∂x

/
∂f
∂y

)

Vmax

Edges Ridges

[λmax 0
0 λmin]

θ = arctan( fy /fy)

fxf

Direction of gradient with derivative Gaussian Filters

fx θ = arctan( fy /fy)∇f = ( fx, fy)fy

∂gσ(x, y)
∂x

∂gσ(x, y)
∂y
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Edge Detection

10

GradientSmoothing

Gradient

Hysteresis

threshold

Detected edgesInput: fundus

Canny edge detector [Canny 1986]

fx

fy
cartesian


to

polar

Non-maximun 
suppressionθ

|∇f |

|∇f | = f 2
x + f 2

y

f(x, y)
σ

Tlow, Thigh

90
TH

75
TL

? ?

? ? ?

?

?

? ? ?

? ?

?

? ?

? ?
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Ridge Detection
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HessianSmoothing
eigen

value


+

vector

Hessian

H =

"
@f 2

@x
@f 2

@x@y
@f 2

@x@y
@f 2

@y

#

Figure of meritInput: fundus

m

θ

m = λ1 λ1 − λ2

Hf(x, y)
σ

Non-maximun 
suppression

Hysteresis

threshold

Detected ridges

Tlow, Thigh

90
TH

75
TL

? ?

? ? ?

?

?

? ? ?

? ?

?

? ?

? ?
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Filament-like, Membrane-like Detection 
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Threshold + Skeletonization Vesselness (FIJI)

Tubeness (FIJI)Canny detector for ridges

Input: fundus

Largest Hessian eigenvalues

Membrane

λ1 ≫ max(λ2, λ3)

Video
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Contour Tracing
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Binary image 2D only 
Square tracing algorithm “left-right” 😉

Dynamic programming  
Viterbi Algorithm 
Backtrack the shortest path on a graph

Gradient vector (good solution for 3D) 
Using magnitude and direction

Hysteresis threshold 
Low and high thresholds

Magnitude of gradient 
Follow the local extrema
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Keypoint Detection
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Corner Harris Detector 
• Based on Gradient Structure Tensor 
• Local maximum on Harris index

H(x, y) = λminλmax − k(λmin + λmax)2

SIFT 
Scale-invariant Feature Transf. (H. Lowe, 2006)

• Scale invariant with series of DoG 
• Dominant orientation of local keypoint

Alignment, registration of 2 
sets of keypoints


JavaSIFT, Stephan Saafeld

SURF 
Speeded Up Robust Feature (H. Bays, 2006)

• Laplacian pyramid and gaussian pyramid 
• Determinant of Hessian

SIFT

Harris Corner Harris Corner



 Course Feature Detection EPFL □ BIO-410 □ BIOIMAGE INFORMATICS □ DS

Line Detection Hough Transform
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Principle 
• Express the shape in the parameter space 
• Voting procedure (slow)

Point ↔︎ Line

Image space

(x,y)

Hough space

(a,b)

y = a x + b b = − x0 a + y0

θ

r = x0 cos(θ) + y0 sin(θ)
r

Accumulator

Find local 
max. (𝛳, r)

✓Robust to noise

✓ Able to find approximative line


‣ Slow


‣ Discretization


‣ Threshold
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Circle Detection Generalized Hough Transform
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r2 = (x − xc)2 + (y − yc)2

Hough space:  
3 parameters (xc, yc, r)

Circle
Input 

image

xc

r

Accumulator

Edges 
(Sobel)

Detection 
(100 max.)

Score in 
Hough Space
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Parametric Shape Fitting
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Ellipse curve fitting  
on the contour image 
• Parameters: Location (x,y) - Axis - Orientation 
• Required an initialization 
• Overlap 

Gaussian fitting 
on the data image 
• Parameters: Amplitude - Location - Sigmas - Orientation 
• Required an initialization 
• Overlap

Parametric curve fitting  
➜ Active contour 
• N points on the curve
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Texture Analysis
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What is texture in image? 
• Structural repeating pattern of local variations  
• Statistical measure the arrangement of intensities in a region  
• Self-similarity primitives with specific spatial distribution  
• Invariance ✓translation ✓scale 𐄂 rotation

Texture operators 

• Histogram 

• Moments  

• Co-occurence matrix 

• Gabor filters  

• Filter bank (DCT) 

• Wavelets 

• ....

DCT

Gabor

Mp,q = ∫ ∫ xpyq f(x, y) Moments

3D X-ray CT scan

healthy

emphysema

ground glass

honeycombing

A. Depeursinge, Biomedical Texture Analysis, 2018

fibroblastic

meningothelial

psammomatous

transitional

Color histopathology
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Texture Analysis
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Filters bank

and


aggregation

⃗u(x, y)

u1(x, y)
u2(x, y)

⋮
un(x, y)

Feature vector Machine Learning 
Handcrafted features 
Feature classification

local window 
(scale)

Classifier 
• Discriminant analysis 
• SVM 
• Random Forces

Training

u1

u2

Class1 Class2
input DetectionProbability map 

w1u1 + w2u2

Predict

Deep Learning 
Neuron networks 

Pixel classification
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Directional Image Analysis
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Input image Gaussian filter

Median filter

Direction and orientation information 
• Local directional cues: edges, ridges, patterns, texture 
• Importance in bioimaging

David Marr (1980) - Human visual system

“directional clues, edges, ridges, and corners are encoded by a small number of neurons"

Direction is 
extracted for 

derivatives of the 
images
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Gradient Structure Tensor
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Input imageGradient structure tensor at a given position x

J(x) = ∫ w(y − x)(∇f(y)∇T f(y)) dy

Window of 
observation 

non-negative 
function 

(e.g. Gaussian)

∇f(x, y)∇T f(x, y) =

∂f
∂x

∂f
∂x

∂f
∂x

∂f
∂y

∂f
∂y

∂f
∂x

∂f
∂y

∂f
∂y

in 2D

Tensor in 2D

[λ1 0
0 λ2][

𝒮(g2
x ) 𝒮gxgy)

𝒮(gygx) 𝒮(g2
y ) ]

λ1 λ2

Noisy, no preferred direction H H

Tubular-like structure, filament H L

Blob-like structure, spot L L

Tensor in 3D

λ1 λ2 λ3
Noisy, no preferred direction H H H

Plate-like structure, membrane H H L

Tubular structure, filament H L L

Blob-like structure, spot L L L

𝒮(g2
x ) 𝒮(gxgy) 𝒮(gxgz)

𝒮(gygx) 𝒮(g2
y ) 𝒮(gygz)

𝒮(gzgx) 𝒮(gzgy) 𝒮(g2
z )

λ1 0 0
0 λ2 0
0 0 λ3
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Structure Tensor Features
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Input image Gaussian filter

Energy Orientation Coherency
1 1294.8 89.04 0.303
2 3.3 -81.86 0.075
3 1082.1 15.67 0.346
4 688.5 -18.46 0.644
5 2606.6 4.60 0.173
6 1695.5 52.74 0.683

Source: Fiber of paper board, Rosiana Lestiani, Monash University, Australia

Low 
coherency

high coherency

Local features computed from the tensor matrix in 2D

Gradient energy: E = trace(J) = J11 + J22

Orientation: u1 = (cos �, sin �) with � =
1
2

arctan
�

2J12

J22 � J11

�

Coherency: 0 � C =
�max � �min

�max + �min
=

�
(J22 � J11)2 + 4J2

12

J22 + J11
� 1

J(x, y) =

�
J11(x, y) J12(x, y)
J12(x, y) J22(x, y)

⇥
Tensor Matrix
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Structure Tensor Features
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Input image

Energy CoherencyOrientation Color representation

Local features computed from the tensor matrix in 2D

Gradient energy: E = trace(J) = J11 + J22

Orientation: u1 = (cos �, sin �) with � =
1
2

arctan
�

2J12

J22 � J11

�

Coherency: 0 � C =
�max � �min

�max + �min
=

�
(J22 � J11)2 + 4J2

12

J22 + J11
� 1

hue saturation HSBbrightness

Gaussian filter

RGB

HSB

Input
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Structure Tensor 3D
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Color coded orientation (MIP)Input data (MIP)

Collagen fiber in adventitia of rabbit carotids ex vivo. 3D confocal microscopy. Rana Rezakhaniha, LHCT, EPFL
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Structure Tensor Applications
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Collagen fiber. Max. intensity projection of confocal 
images. Rana Rezakhaniha, LHCT, EPFL

Circular histogram of orientations

Courtesy Jérôme Hardouïn

Vector field

Dominant orientation

-60.3°Demonstration  
OrientationJ http://bigwww.epfl.ch/demo/
orientation/

Directional analysis

• Based on the gradient 
• At the pixel level 
• Scale 𝜎  
• Orientation 
• Coherency

Access to local information


